

Building Protection ToolKit (BPTK)

Wayne Bryden
Program Manager
Special Projects Office
Defense Advanced Research Projects Agency

Building Protection ToolKit (BPTK)

A collection of software tools for designing:

An Immune Building

GUI: Graphical User Interface CONOPS: Concept of Operations

• The responses to a Chemical-Biological (CB) incident (e.g., CONOPS for first responders)

2

Topics

- Relation to the Immune Building Program
- Building Protection Toolkit
- MESO w/RUSTIC
 - External Transport Modeling
- Immune Building ToolKit
 - Automated Multi-Zonal Model Creation
- Analytical Conflict and Tactical Simulation
 - External Environment and Human Interactions

Immune Building Program

Threat:

- Focus on protecting military buildings from:
 - » Attack by chemical or bio warfare agents.
 - » External or internal release.

Goal:

- Make buildings far less attractive targets.
- Approach:
- Reduce effectiveness of attack via dynamic response of HVAC (and other) infrastructure.
- Objectives:
- Protect human occupants
 - » Stop/neutralize agent before it reaches humans
- Restore building to function quickly
 - » Decontaminate effectively.
- Preserve forensic evidence.

Building Protection ToolKit (BPTK) Objectives

- Automate Development of Building Database
 - Internal and external structure
 - Internal HVAC related infrastructure
- Provide CBR Internal/External Threat Representation
 - Libraries of threat weapons and agents
 - Models external/internal CBR transport in a complex urban environment
 - Concentration, deposition, and dosage of contaminant materials
- Analyze Protection Capabilities
 - Provides libraries of IB components
 - Evaluates and optimizes protection architectures
 - Supports cost-benefit studies and IB design principles
- Simulate people, protection, CONOPS and tactical response
 - Area security, personnel exposure/evacuation, first responder actions, etc.
- Report Results
 - Protection system components, FBE, casualties, cost

Building Protection ToolKit (BPTK) Modeling and Simulation Flow Chart

MESO / RUSTIC External Urban Transport Modeling

Objective: A fast-running, accurate, chemical, biological, and *radiological* urban transport capability

- Urban wind flow model that converges quickly (RUSTIC)
- Random-walk particle atmospheric transport model (MESO)
- k-ω turbulence model modified for flow around buildings
- Handles ground turbulence and meteorology (atmospheric stability)

 Slower than simple mass-consistent flow codes, but more defensible and accurate for urban transport

Decreasing run times towards goal of less than 30 minutes for 1.4 x1.0 km city grid with 5 m resolution

CFD Concentration

Immune Building ToolKit (IBTK) Automated Multi-Zonal Model Creation

Automated generation of multi-zonal model from Industry Foundation Class (IFC) File

- Process for generation of IFC file from:
 - Blueprints
 - Microstation file
 - AutoCAD file
 - ArchiCAD file

Immune Building ToolKit (IBTK) Model Creation Highlights

- 3D Visualization and Element Manipulation
 - Real World Objects (doors, windows, ducts) with properties dialogs
 - Standard "tree" structure for easy search and location of objects
 - Simplified "drag and drop" interface for defining new building components
 - Cut, copy, and paste features

- Predefined libraries of Chemical and Biological Agents, Filters, and Sensors
- Simplified interface with default data and connection to libraries for:
 - HVAC Systems and Components
 - Protective Measures (Sensors / Filters)
 - Threats
- Integrates with external models via Weather-Pressure-Contaminant (WPC)
 File

Analytical Conflict and Tactical Simulation Environment and Human Interactions

- Provides analysis of CONOPS and training of responders to a CBR event in an urban area.
- Derived from the Joint Conflict and Tactical Simulation (JCATS)
 - Real-time, man-in-the-loop, force-on-force, multi-host, entity-based, client/server model tactical simulation

data -- can zoom from half the

earth's surface into a specific

room in a building at 4cm

accuracy

Can network multiple player stations, where players only see and control their specific elements.

Front Doors

Doors

Windows

Interior

Walls

Entity based, so can build multi-sided forces to match any scenario, equipped with actual equipment, or proposed (non-existent) equipment.

Entity interactions are based on actual physics models and actual field data.

Analytical Conflict and Tactical Simulation Analysis Capabilities

- Entity movements & interactions in indoor and outdoor environments
- Fidelity at the single entity level
- External urban detail and building interiors
- Representation of essential human-response behaviors group)
 - Human response to contaminants
 - Communication, crowd control
 - Population movement, e.g.evacuation
- Emergency response coordination
- Medical triage / treatments
 - Dose response & medical load
- Sensor networks
- Decontamination
- Exposure statistics

